검색 상세

AI-Driven Defensive Sector Rotation ETF for the Vietnamese Stock Market : An Empirical Investigation of Machine Learning Applications in Emerging Market Portfolio Management

베트남 주식시장을 위한 AI 기반 방어적 섹터 로테이션 ETF

초록 (요약문)

This study investigates the development and systematic optimization of an intel- ligent sector rotation Exchange-Traded Fund (ETF) for the Vietnamese stock mar- ket using reinforcement learning techniques. We implement a three-tier AI frame- work integrating market regime detection, LSTM forecasting, and Proximal Policy Optimization (PPO) for dynamic sector allocation. Through systematic model im- provement addressing reward function calibration, cash management optimization, and dividend adjustments, our framework demonstrates substantial performance en- hancement. The final optimized strategy achieves 68.6% total return with a Sharpe ratio of 2.142, representing a 12.8× improvement in returns and 64× improvement in risk-adjusted performance compared to the initial model (5.37% return, 0.0335 Sharpe ratio). While initially underperforming the VN-Index benchmark signifi- cantly, the improved strategy achieves competitive performance while maintaining superior defensive characteristics, with maximum drawdown limited to -10.0% ver- sus -68.32% for the market index. Our research demonstrates the critical importance of systematic model development and reward function engineering in financial rein- forcement learning applications. Keywords: Exchange-Traded Funds, Sector Rotation, Reinforcement Learning, Model Optimization, Vietnamese Market, Portfolio Management JEL Classification: G11, G15, C61

more

목차

1 Introduction 1
2 Literature Review 3
2.1 Sector Rotation Strategies and Emerging Markets . . . . . . . . . . . . . . 3
2.2 Market Regime Detection Methodologies . . . . . . . . . . . . . . . . . . 4
2.3 Reinforcement Learning for Portfolio Management . . . . . . . . . . . . . 5
2.4 Deep Learning in Financial Forecasting . . . . . . . . . . . . . . . . . . . 6
2.5 Research Gaps and Contributions . . . . . . . . . . . . . . . . . . . . . . 6
3 Methodology: Three-Tier AI Framework 7
3.1 Framework Overview and Integration Architecture . . . . . . . . . . . . . 7
3.1.1 Tier 1: Market Regime Detection . . . . . . . . . . . . . . . . . . 7
3.1.2 Tier 2: LSTM Sector Forecasting . . . . . . . . . . . . . . . . . . 8
3.1.3 Tier 3: Reinforcement Learning Portfolio Allocation . . . . . . . 8
3.2 Reinforcement Learning Framework: Design and Integration . . . . . . . . 8
3.2.1 Environment Design and State Space Construction . . . . . . . . 8
3.2.2 Action Space and Constraints . . . . . . . . . . . . . . . . . . . . 9
3.2.3 Reward Function: Evolution from Over-Conservative to Balanced 9
3.2.4 PPO Implementation and Training Strategy . . . . . . . . . . . . 11
3.3 Data Sources and Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 12
4 Model Development and Iterative Improvements 12
iv
4.1 Initial Implementation and Performance Challenges . . . . . . . . . . . . 13
4.1.1 Problem Identification and Root Cause Analysis . . . . . . . . . . 13
4.2 Systematic Improvement Process . . . . . . . . . . . . . . . . . . . . . . 14
4.2.1 Stage 1: Reward Function Optimization . . . . . . . . . . . . . . 14
4.2.2 Stage 2: Cash Management and Regime Responsiveness . . . . . 15
4.2.3 Stage 3: Data Quality Enhancement - Dividend Adjustment . . . . 15
4.3 Cash Management Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Validation and Performance Attribution . . . . . . . . . . . . . . . . . . . 17
4.4.1 Component Contribution Analysis . . . . . . . . . . . . . . . . . 17
4.4.2 Out-of-Sample Validation . . . . . . . . . . . . . . . . . . . . . . 18
4.5 Complete Performance Evolution . . . . . . . . . . . . . . . . . . . . . . 19
5 Empirical Results 19
5.1 Performance Evolution Through Development Stages . . . . . . . . . . . 19
5.2 Implementation Timeline and Improvement Factors . . . . . . . . . . . . 21
5.3 Final Model Performance vs. VN-Index Benchmark . . . . . . . . . . . . 21
5.4 Component Contribution Analysis . . . . . . . . . . . . . . . . . . . . . . 22
5.5 Regime-Specific Performance Analysis . . . . . . . . . . . . . . . . . . . 22
5.6 Risk-Return Characteristics Analysis . . . . . . . . . . . . . . . . . . . . 23
6 Discussion 24
6.1 Critical Role of Reward Function Engineering in Financial RL . . . . . . . 24
6.1.1 Mathematical Structure and Behavioral Consequences . . . . . . 24
6.1.2 Multi-Objective Optimization Benefits . . . . . . . . . . . . . . . 24
6.2 Three-Tier Framework Integration Effectiveness . . . . . . . . . . . . . . 25
6.2.1 Information Flow and Decision Quality . . . . . . . . . . . . . . 25
6.2.2 Adaptive Behavior and Market Responsiveness . . . . . . . . . . 25
v
6.3 Comparison with Financial RL Literature . . . . . . . . . . . . . . . . . . 26
6.4 Methodological Contributions and Transparency . . . . . . . . . . . . . . 26
6.4.1 Documentation of Development Process . . . . . . . . . . . . . . 26
6.4.2 Systematic Improvement Methodology . . . . . . . . . . . . . . . 26
6.5 Practical Implementation Considerations . . . . . . . . . . . . . . . . . . 27
6.5.1 Computational Requirements and Scalability . . . . . . . . . . . 27
6.5.2 Risk Management and Robustness . . . . . . . . . . . . . . . . . 27
6.6 Limitations and Areas for Future Research . . . . . . . . . . . . . . . . . 27
6.6.1 Data Dependencies and Overfitting Risks . . . . . . . . . . . . . 27
6.6.2 Market Impact and Scalability . . . . . . . . . . . . . . . . . . . 28
6.6.3 Regime Detection Stability . . . . . . . . . . . . . . . . . . . . . 28
7 Conclusion 28
7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.2 Theoretical and Practical Implications . . . . . . . . . . . . . . . . . . . . 29
7.3 Limitations and Transparency . . . . . . . . . . . . . . . . . . . . . . . . 29
7.4 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.4.1 Methodological Extensions . . . . . . . . . . . . . . . . . . . . . 30
7.4.2 Market Applications . . . . . . . . . . . . . . . . . . . . . . . . 30
7.4.3 Risk Management Enhancements . . . . . . . . . . . . . . . . . . 30
7.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

more