A Study on Unsupervised Deep Neural Networks for Medical Ultrasound Imaging
- 주제어 (키워드) Medical imaging , Ultrasound imaging , Medical ultrasound system , Deep learning , Medical AI , Unsupervised learning
- 발행기관 서강대학교 일반대학원
- 지도교수 유양모
- 발행년도 2025
- 학위수여년월 2025. 2
- 학위명 박사
- 학과 및 전공 일반대학원 전자공학과
- 실제 URI http://www.dcollection.net/handler/sogang/000000079690
- UCI I804:11029-000000079690
- 본문언어 영어
- 저작권 서강대학교 논문은 저작권 보호를 받습니다.
목차
1. Chapter 1 Introduction 3
1.1. Medical ultrasound 3
1.2. Deep learning approaches for medical ultrasound 7
1.3. Challenges of deep learning driven medical ultrasound 10
1.3.1. Conventional supervised learning frameworks 10
1.3.2. Ill-posed problems of image reconstruction tasks 11
1.3.3. Data acquisition for conventional deep learning models 12
1.4. Specific aims and thesis organization References 12
References 14
2. Chapter 2 B-Mode Image Reconstruction 18
2.1. Introduction 18
2.2. Conventional ultrasound beamformers 22
2.3. Proposed framework: Deep coherence learning 25
2.3.1. Basic principles and problem formulations 25
2.3.2. Unsupervised learning framework 26
2.3.3. Network architecture and implementation details 29
2.4. Experimental setups 31
2.4.1. Dataset utilization 31
2.4.2. Evaluation metrics 34
2.5. Experimental results 35
2.5.1. Training curves 35
2.5.2. Simulation and phantom study 36
2.5.3. In vivo study 44
2.5.4. Computation complexity analysis 50
2.5.5. Ablation study: Impact of angle span 50
2.6. Discussion 52
2.7. Conclusion 55
References 56
3. Chapter 3 Reverberation Artifact Reduction 65
3.1. Introduction 65
3.2. Proposed unsupervised learning framework 68
3.2.1. Basic principles and overall framework 68
3.2.2. Modeling of reverberation artifact and dataset utilization 70
3.2.3. Network architecture and loss weighting techniques 72
3.3. Experimental setups 74
3.3.1. Implementation details and evaluation metrics 74
3.4. Experimental results 75
3.4.1. Phantom study: Fabricated artifact models 75
3.4.2. In vivo study 84
3.5. Discussion 86
3.6. Conclusion 88
References 89
4. Chapter 4 Clutter Rejection for Perfusion Imaging 92
4.1. Introduction 92
4.2. Conventional clutter filters for perfusion imaging 94
4.3. Proposed framework: Deep clutter filter 97
4.3.1. Basic principles and overall framework 97
4.3.2. Training and inference stages 99
4.3.3. Network architecture 103
4.4. Experimental setups 104
4.4.1. Dataset utilization and implementation 104
4.4.2. Evaluation metrics 107
4.5. Experimental results 107
4.5.1. Flow phantom study 108
4.5.2. In vivo study 113
4.6. Discussion 116
4.7. Conclusion 119
References 119
5. Chapter 5 Speckle Reduction and Image Enhancement 122
5.1. Introduction 122
5.2. Conventional speckle reduction methods 124
5.3. Proposed unsupervised learning frameworks 127
5.3.1. Basic principles and overall frameworks 127
5.3.2. Unsupervised speckle reduction technique 129
5.3.3. Self-supervised image enhancement technique 132
5.3.4. Network architecture 132
5.4. Experimental setups 134
5.4.1. Dataset utilization and implementation 134
5.4.2. Evaluation metrics 135
5.5. Experimental results 136
5.5.1. Simulation phantom study 136
5.5.2. Experimental phantom study 139
5.5.3. In vivo study 143
5.6. Discussion 150
5.7. Conclusion 151
References 152
6. Chapter 6 Conclusions and Future Directions 156
6.1. Introduction 156
6.2. Contributions 157
6.2.1. High quality B-mode image reconstruction 157
6.2.2. Artifact and clutter rejection 158
6.2.3. Applicable to various imaging modes 159
6.2.4. Speckle reduction and image enhancement 160
6.3. Future directions 161
6.3.1. Network compression and acceleration using hardware 161
6.3.2. Generalization and system integration 162
6.4. Conclusions 163