검색 상세

마이크로파 가열에 의한 폐타이어 열분해 거동연구

초록/요약

The effects of the operating variables on the microwave waste tire pyrolysis process were studied. The results of this study showed that as the microwave output strength was increased from 0.79 to 3.39kW/kg, the required reaction time decreased dramatically from 73.7min to 15.9min, the oil yield increased from 25.2% to constant values at 37.2-37.6%, microwave power consumption drastically decreased from 1.55kWh/kg to 1.02kWh/kg. As the microwave power consumption increased from 0.86 to 1.59kWh/kg, the oil yield decreased from 38.8 to 35.4%. These findings indicates that the microwave output power should be kept as high as possible within the experimental range in order to minimize the required reaction time and maximize the oil yield. The composition of the pyrolysis oil was analyzed using GC/MS and the results of this analysis showed that there is not a significant relation between the microwave ouput power and the concentration of the aromatic compounds. The concentration of the oils obtained by microwave pyrolysis was 60-70%. This value was significantly higher than that obtained by conventional pyrolysis. This fact seems to be because the temperature during the microwave pyrolysis was much higher than that during the conventional pyrolysis. The concentration of limonene was higher with conventional pyrolysis than with microwave pyrolysis. However, the concentrations of BTX were vice versa. These facts seems to be because the concentrations of BTX are higher at higher temperature, but that of limonene is vice versa.

more

초록/요약

실험실 규모 회분식 반응장치를 이용하여 마이크로파 폐타이어 열분해 공정의 운전인자의 영향을 조사한 결과, 마이크로파 출력이 0.79kW/kg에서 3.39kW/kg으로 증가할 때 반응시간은 73.7분으로부터 15.9분으로 크게 감소하였고 오일수율은 증가하여 2.31-2.39kW/kg에서 37.2-37.6%의 일정한 값에 도달하였다. 마이크로파 출력량은 1.55kWh/kg으로부터 1.02kWh/kg으로 급격히 감소하였으며 마이크로파 출력량이 0.86kWh/kg으로부터 1.59kWh/kg까지 증가할 때 오일수율은 38.9%로부터 35.4%로 완만하게 감소하였다. 이러한 조사결과는 실험범위 내에서 마이크로파 출력을 높게 유지하여 반응시간과 마이크로파 출력량을 최소화하고 오일수율은 최대화하여야 함을 나타낸다. 마이크로파 열분해 오일의 성분을 GC/MS를 사용하여 분석한 결과, 마이크로파 출력이 증가할수록 반응온도는 증가하였지만 마이크로파 출력은 방향족 화합물의 농도와 뚜렷한 관계를 보여주지 않았다. 마이크로파 열분해시 생성된 오일은 방향족 화합물의 농도가 60-70%정도로 재래식 열분해 오일의 방향족 화합물 농도보다 월등히 높았으며 이러한 현상은 마이크로파 열분해시 반응온도 특히 타이어 시료 내부의 온도가 재래식 열분해시 반응온도보다 이미 충분히 높았기 때문으로 보인다. 열분해 오일의 limonene 농도는 재래식 열분해가 마이크로파 열분해 보다 월등히 높았으나 반응온도가 증가할수록 감소하였고, BTX의 농도는 마이크로파 열분해가 재래식 열분해 보다 월등히 높았으나 마이크로파 출력의 영향이 명확하지 않았다. 이러한 현상은 온도가 benzene, toluene, xylene등의 농도는 온도가 증가할수록 증가하고 limonene 농도는 열분해 온도가 낮을수록 증가하며, 마이크로파 열분해시 반응온도, 특히 타이어 시료 내부의 온도가 재래식 열분해시 반응온도보다 월등히 높았기 때문으로 보인다.

more

목차

제 1 장 서론 = 1
제 2 장 이론적 고찰 = 5
2.1. 열분해 개요 = 5
2.2. 폐타이어 열분해 특성 = 5
2.2.1. natural rubber(NR) 열분해 특성 = 6
2.2.2. butadiene rubber(BR)과 styrene-butadiene rubber(SBR) 열분해 특성 = 7
2.3. 마이크로파 가열 = 8
2.3.1. 마이크로파의 정의 = 8
2.3.2. 분극현상 = 10
2.4. 마이크로파 가열장치의 구성 = 13
2.4.1. 마이크로파 발진장치 = 14
2.4.1.1. 마그네트론 = 14
2.4.1.2. 마이크로파 출력제어 = 16
2.4.2. 마이크로파 도파부 = 16
2.4.2.1. 차단기(isolator) = 16
2.4.2.2. 정합기(tuner) = 16
2.4.2.3. 출력 표시부(power monitor) = 17
2.4.2.4. 도파관 = 17
2.5. 마이크로파 가열식 폐타이어 열분해 기술의 장점 = 19
제 3 장 실험 = 21
3.1. 시료의 특성 = 21
3.2. 실험장치 및 실험 방법 = 23
3.2.1 마이크로파 가열에 의한 열분해 방식 = 23
3.2.2 재래식 열분해 방식 = 25
3.3. 열분해 특성 분석 = 27
3.3.1 SIMDIS 분석 = 27
3.3.2 GC/MS 분석 = 27
제 4 장 결과 및 고찰 = 29
4.1 재래식 열분해 = 29
4.1.1 폐타이어 시료의 무게감량 = 29
4.1.2 생성물의 수율변화 = 31
4.1.3 생성오일의 특성분석 = 32
4.1.3.1 SIMDIS를 이용한 비점분포 분석 = 32
4.1.3.2 GC/MS를 이용한 정성 및 정량 분석 = 34
4.2 마이크로파 열분해 = 39
4.2.1 운전인자의 영향 = 39
4.2.2 생성오일의 특성분석 = 50
4.2.2.1 SIMDIS를 이용한 비점분포 분석 = 50
4.2.2.2 GC/MS를 이용한 정성 및 정량 분석 = 53
제 5 장 결론 = 71
참고문헌 = 73
List of Tables
Table 1. Generation and recycling of domestic waste tire = 4
Table 2. Wave guide standard and application frequency = 18
Table 3. Component of waste tire = 21
Table 4. Results of elemental and proximate analyses of waste tire = 22
Table 5. Instrumental conditions for SIMDIS analysis = 28
Table 6. Instrumental conditions for GC/MS analysis = 28
Table 7. Weight% of hydrocarbon group of tire pyrolysis oil obtained by conventional method = 35
Table 8. Major components of the tire pyrolysis oil obtained at 400℃ = 36
Table 9. Major components of the tire pyrolysis oil obtained at 500℃ = 37
Table 10. Major components of the tire pyrolysis oil obtained at 600℃ = 38
Table 11. Weight% of hydrocarbon group of tire pyrolysis oil obtained by microwave method (0.79kW/kg-2.31kW/kg) = 54
Table 12. Weight% of hydrocarbon group of tire pyrolysis oil obtained by microwave method (2.39kW/kg-3.39kW/kg) = 54
Table 13. Major components of the tire pyrolysis oil obtained at 0.79kW/kg = 55
Table 14. Major components of the tire pyrolysis oil obtained at 0.92kW/kg = 56
Table 15. Major components of the tire pyrolysis oil obtained at 1.38kW/kg = 57
Table 16. Major components of the tire pyrolysis oil obtained at 1.69kW/kg = 58
Table 17. Major components of the tire pyrolysis oil obtained at 1.90kW/kg = 59
Table 18. Major components of the tire pyrolysis oil obtained at 2.01kW/kg = 60
Table 19. Major components of the tire pyrolysis oil obtained at 2.31kW/kg = 61
Table 20. Major components of the tire pyrolysis oil obtained at 2.39kW/kg = 62
Table 21. Major components of the tire pyrolysis oil obtained at 2.86kW/kg = 63
Table 22. Major components of the tire pyrolysis oil obtained at 2.93kW/kg = 64
Table 23. Major components of the tire pyrolysis oil obtained at 2.95kW/kg = 65
Table 24. Major components of the tire pyrolysis oil obtained at 3.39kW/kg = 66
List of Figures
Fig. 1. Electromagnetic spectrum = 9
Fig. 2. Dipolar reorientation mechanism = 11
Fig. 3. Frequency dependence of the polarization mechanism in dielectrics = 12
Fig. 4. Microwave heating apparatus structure = 13
Fig. 5. Magnetron cavity structure = 14
Fig. 6. Tuning circuit = 15
Fig. 7. Lab scale microwave waste tire pyrolysis reactor = 24
Fig. 8. Lab scale conventional waste tire pyrolysis reactor = 26
Fig. 9. Results of TG/DTA of analyses of waste tire = 30
Fig. 10. Results of effects of temperature on the product yields(%) = 31
Fig. 11. Results of boiling point distribution of waste tire pyrolysis oil by the conventional heating = 33
Fig. 12. GC/MS chromatogram of the tire pyrolysis oil obtained at 400℃ = 36
Fig. 13. GC/MS chromatogram of the tire pyrolysis oil obtained at 500℃ = 37
Fig. 14. GC/MS chromatogram of the tire pyrolysis oil obtained at 600℃ = 38
Fig. 15. The time-dependent variations of the temperatures at various microwave output powers = 41
Fig. 16. The time-dependent variations of oil yields at various microwave output powers = 42
Fig. 17. Effects of microwave output power on the required time = 43
Fig. 18. Effects of microwave output power on the product yields(%) = 45
Fig. 19. Effects of microwave output power on the temperature = 46
Fig. 20. Effects of temperature on the oil yield = 47
Fig. 21. Effects of microwave output power on the power consumption = 48
Fig. 22. Effects of power consumption on the oil yield = 49
Fig. 23. Results of boiling point distribution of waste tire pyrolysis oil obtained by the microwave heating (a) 0.79-1.90kW/kg (b) 2.01-2.77kW/kg (c) 2.86-3.39kW/kg = 51
Fig. 24. GC/MS chromatogram of the tire pyrolysis oil obtained at 0.79kW/kg = 55
Fig. 25. GC/MS chromatogram of the tire pyrolysis oil obtained at 0.92kW/kg = 56
Fig. 26. GC/MS chromatogram of the tire pyrolysis oil obtained at 1.38kW/kg = 57
Fig. 27. GC/MS chromatogram of the tire pyrolysis oil obtained at 1.69kW/kg = 58
Fig. 28. GC/MS chromatogram of the tire pyrolysis oil obtained at 1.90kW/kg = 59
Fig. 29. GC/MS chromatogram of the tire pyrolysis oil obtained at 2.01kW/kg = 60
Fig. 30. GC/MS chromatogram of the tire pyrolysis oil obtained at 2.31kW/kg = 61
Fig. 31. GC/MS chromatogram of the tire pyrolysis oil obtained at 2.39kW/kg = 62
Fig. 32. GC/MS chromatogram of the tire pyrolysis oil obtained at 2.86kW/kg = 63
Fig. 33. GC/MS chromatogram of the tire pyrolysis oil obtained at 2.93kW/kg = 64
Fig. 34. GC/MS chromatogram of the tire pyrolysis oil obtained at 2.95kW/kg = 65
Fig. 35. GC/MS chromatogram of the tire pyrolysis oil obtained at 3.39kW/kg = 66
Fig. 36. BTX and Limonene content changes in tire pyrolysis oil by the microwave heating and conventional heating = 68
Fig. 37. Proportion of aromatic and polycyclic aromatic in tire pyrolysis oil by the microwave heating and conventional heating = 70

more