생체모방형 IPMC 구동기 설계 및 제작
Design and Fabrication of Biomimetic IPMC Actuator
- 주제(키워드) 생체모방 , IPMC
- 발행기관 서강대 일반대학원 기계공학과
- 지도교수 이승엽
- 발행년도 2009
- 학위수여년월 2009. 2
- 학위명 석사
- 실제URI http://www.dcollection.net/handler/sogang/000000045031
- 본문언어 한국어
목차
1.서론 = 1
1.1연구 배경 = 1
1.2 EAP 최근 동향과 응용 분야 = 3
1.2.1 EAP의 연구 동향 = 3
1.2.2 EAP의 응용 분야 = 5
2.IPMC의 원리 및 제작 = 9
2.1 IPMC(Ionic Polymer Metal Composite) = 9
2.1.1 IPMC .. = 9
2.1.2 Nafion 구조 = 11
2.1.3 무전해도금 = 13
2.2 IPMC 제작 실험 = 15
2.2.1 IPMC 제작과정 = 15
2.2.2 전처리 과정 = 17
2.2.3 이온 흡착 과정 = 25
2.2.4 1차 도금 과정 = 26
2.2.5 2차 도금 과정 = 26
2.2.6 이온 치환 과정 = 28
2.2.7 Ionic liquid 처리 = 28
3. IPMC 성능 실험 = 31
3.1 IPMC 성능 및 성능 변수 = 31
3.2 IPMC 변형의 특성 = 32
3.3 IPMC의 이론적 거동 = 33
3.4 IPMC의 변위와 힘 실험 = 42
3.4.1 전류 보강 Op-amp 제작 = 42
3.4.2 실험 장치 = 44
3.4.3 IPMC의 변위 실험 = 46
3.4.4 IPMC의 구동력 실험 = 50
3.5 변위 및 힘 측정 실험 결과 = 53
4. 생체모방형 IPMC 구동기 설계 및 제작 = 54
4.1 생체모방공학 = 54
4.1.1 생체모방공학 기술 = 54
4.1.2 수중 동물의 추진 역학 모방 = 57
4.2 수중 동물의 꼬리지느러미 모사 로봇 = 59
4.2.1 수중 동물의 추진 움직임 = 59
4.3 IPMC를 적용한 구동기 장치의 부력 매커니즘 = 62
4.4 생체모방형 IPMC 꼬리지느러미 매커니즘 = 64
4.5 1차 생체모방형 IPMC 구동기 = 68
4.5.1 물갈퀴형태 IPMC 구동기 설계 및 제작 = 68
4.5.2 물갈퀴형태 IPMC 구동기 실험 = 70
4.5.3 물갈퀴형태 IPMC 구동기 상대변위실험 = 73
4.5.4 물갈퀴형태 IPMC 구동장치 실험 결과 = 75
4.6 2차 생체모방형 IPMC 구동기 = 77
4.6.1 수중 동물 꼬리지느러미 모방한 구동기 설계 및 제작 = 77
4.6.2수중 동물 꼬리 지느러미 모방한 구동기 실험 = 79
5. 결론 = 81
6. Reference = 83
List of Tables
Table.1 Category of EAP = 3
Table.2 Displacement of IPMC pre-treated by Sandblasting = 48
Table.3 Displacement of IPMC pre-treated by Sandpaper = 48
Table.4 Force of IPMC pre-treated by Sandpaper = 51
Table.5 Force of IPMC pre-treated by Sandblasting = 51
List of Figures
Fig.1 Characteristic of EAP = 5
Fig.2 Artificial muscle by EAP = 6
Fig.3 Movement of IPMC = 7
Fig.4 Application of IPMC = 4
Fig.5 IPMC schematics indicating surface morphology, interface, cluster structure and actuation principle = 10
Fig.6 Schematic representation of a possible microstructure for hydrated Nafind = 12
Fig.7 Nafind structure = 14
Fig.8 Fabrication procedure of IPMC = 16
Fig.9 Pre-treated process = 17
Fig.10 SEM of Pre-treted Nafion by #220_3kgf = 18
Fig.11 SEM of Pre-treted Nafion by #220_4kgf = 19
Fig.12 SEM of Pre-treted Nafion by #220_5kgf = 19
Fig.13 SEM of Pre-treted Nafion by #320_3kgf = 20
Fig.14 SEM of Pre-treted Nafion by #320_4kgf = 20
Fig.15 SEM of Pre-treted Nafion by #320_5kgf = 21
Fig.16 SEM of Pre-treted Nafion by 400cw(0.5K) = 21
Fig.17 SEM of Pre-treted Nafion by 400cw(1K) = 22
Fig.18 SEM of Pre-treted Nafion by 400cw(3K) = 22
Fig.19 SEM of Pre-treted Nafion by 600cw(0.5K) = 23
Fig.20 SEM of Pre-treted Nafion by 600cw(1K) = 23
Fig.21 SEM of Pre-treted Nafion by 600cw(3K) = 24
Fig.22 Pt^(+) Adhesion = 25
Fig.23 Reduction process = 27
Fig.24 SEM image of IPMC pre-treated by #220.4kgf = 29
Fig.25 SEM image of IPMC pre-treated by #400CW = 29
Fig.26 SEM image of IPMC pre-treated by #600CW = 30
Fig.27 Operation Amplifier for additional current = 43
Fig.28 Op-amp circuit diagram = 43
Fig.29 Set-up for experiment of IPMC = 45
Fig.30 Set-up for Force measurement = 45
Fig.31 Set-up for voltage = 47
Fig.32 Set-up for Current = 47
Fig.33 Displacement of IPMC pre-treated by Sandblasting = 49
Fig.34 Displacement of IPMC pre-treated by Sandpaper = 49
Fig.35 Force of IPMC pre-treated by Sandblasting = 52
Fig.36 Force of IPMC pre-treated by Sandpaper = 52
Fig.37 Biomimetic robot = 55
Fig.38 Picture and SEM image of lotus = 56
Fig.39 Body and fin shape of typical fish (Upward), thrust generation byfanning motion(Downward) = 58
Fig.40 Schematic(side and topview) of carangiform fish propulsion and A "cartoon" of carangiform swimming consisting of snapshops of the tail as the fish swims from left to right. The arrows indicate lift forces acting on the tail. The fish body is removed for clarity = 61
Fig.41 A small area element in othreference frame = 64
Fig.42 Half of an oscillatory motion = 67
Fig.43 A quarter of an undulatory motion = 67
Fig.44 Fabrication of the Webfoot actuator = 69
Fig.45 Analysis of the Webfoot 1^(st) mode = 70
Fig.46 Displacement vs exciting frequency = 71
Fig.47 Displacement of the Webfoot Actuator at 6.25Hz = 71
Fig.48 Force vs excing frequency = 72
Fig.49 Force of the Webfoot Actuator at 1Hz = 72
Fig.50 Measurement of difference gap of Two IPMC Actuator = 74
Fig.51 Data result of difference gap of Two IPMC Actuator = 74
Fig.52 Design of the Webfoot Robot = 76
Fig.53 Exprtimental Setup of Webfoot Actuator = 76
Fig.54 IPMC fish with carangiform motion using IPMC = 78
Fig.55 Photograph experimental system = 78
Fig.56 Speed vs excing frequency = 80