Selective Conversion of Methanol to Propylene over Zeolite Catalysts
- 주제(키워드) ZSM-5 , Methanol to Prypylene , 촉매
- 발행기관 서강대학교 화공생명공학과 대학원
- 지도교수 박형상
- 발행년도 2009
- 학위수여년월 2009. 2
- 학위명 석사
- 실제URI http://www.dcollection.net/handler/sogang/000000044976
- 본문언어 한국어
초록/요약
본 논문에서는 여러 가지의 제올라이트 촉매를 methanol-to-propylene (MTP)반응 에 적용하여 실험하였다. Part A 에서는 trimethylphosphite (TMP)를 상용 ZSM-5 촉매에 TMP to Aluminum ratio 0.0, 0.5, 1.0, 2.0, 4.0 비율로 처리하여 실험하였다. 촉매의 특성평가는 XRD, N2 adsorption, NH3-TPD, XRF로 측정하였고, methanol-to-propylene 반응에서 촉매 활성을 평가하였다. Trimethylphosphite가 제 올라이트의 강산점을 조절하여 산의 세기를 약하게 만든다는 것을 NH3-TPD를 통 하여 확인하였다. TMP양을 증가시킴에 따라 점차적으로 프로필렌/프로판과 프로필 렌/에틸렌의 비율이 늘어나는 것을 반응실험 결과 볼 수 있었다. 이 현상은 TMP 1.0에서 두드러지게 나타났으며 그 이상으로 TMP를 처리할 경우 이런 긍정적인 효 과는 미미하거나 나타나지 않았다. 가장 이상적인 촉매로 반응 실험결과 나타난 TMP1.0 촉매로 장기안정성 실험을 한 결과 처리하지 않은 촉매와 비교하여 장기적 으로 우수한 전화율과 올레핀 수득율을 나타내었고, 그 효과가 250시간 이상 지속 되는 것을 확인하였다. Part B 에서는 polyurethane sponge를 template로 사용하여 zeolite monolith foam (ZMF)을 Si to Al ratio를 140, 250, 500으로 합성하여 메탄올로부터 light olefin, 주 로 propylene을 얻기 위한 MTP 반응에 적용하였다. 촉매 특성은 SEM, XRD, BET 및 NH3-TPD 등을 통해 분석하였다. 이들 ZMF 촉매는 5~10 μm 크기의 제올라이 트 결정으로 이루어진 strut이 100~300 μm의 거대세공을 형성하는 구조로 되어 있 다. Si/Al=250인 ZMF 촉매가 메탄올 전환반응에서 최대의 올레핀 선택도를 보여주 었으며, 또한 거대세공이 발달된 ZMF촉매는 펠렛 형태보다 촉매활성이 높은 공간 속도에서 뛰어남을 확인할 수 있었는 데 이는 ZMF 촉매의 거대세공에 의한 물질 전달이 용이하기 때문이다. 최적화된 반응 조건과 촉매 조건 하에서 zeolite foam 촉매는 75%의 높은 light olefin의 선택도, 44%의 propylene 선택도를 나타내었다.
more초록/요약
In present work we have studied methanol-to-propylene (MTP) reaction over zeolite catalysts. In part A, HZSM-5 (Si/Al=140) catalysts were treated with trimethylphosphite (TMP) with TMP/Al molar ratio of 0.0~4.0 via vapor phase deposition method to control the acidity of the catalysts. The modified catalysts were characterized by XRD, N2 adsorption, ammonia temperature programmed desorption and XRF. The activity of the catalysts was examined in the conversion reaction of methanol to propylene. The acidity of the modified catalysts and activity of methanol to propylene reaction was optimized in the TMP/Al molar ratio of around 1.0. This sample showed better catalyst properties in the point of catalyst stability, methanol conversion and light olefin selectivity compared to untreated HZSM-5 catalyst. In part B, ZSM-5 monolith foam (ZMF) samples with various framework Si/Al ratios have been successfully synthesized by polyurethane foam template method and evaluated for their catalytic performance with MTP reaction. The samples were tested for their textural properties using SEM, XRD, BET surface area, pore volume and NH3-TPD techniques revealing the formation of ZMF exhibiting about 100-300 μm range macro pores created by packed assembly of 5 ~10 μm size orthorhombic shaped ZSM-5 crystals. The ZMF samples exhibited effective activity in methanol to olefin conversion, with superior product selectivities at optimum Si/Al ratio of 250. Further, the ZMF catalyst with high macro porosity exhibited superior catalytic activity compared to its pelletized form, especially at higher feed flow rates, that signifies the importance of macroporous structure of ZMF in facilitating the enhanced mass transport for the labile diffusion of light olefins. At optimized catalytic properties and reaction conditions, the catalyst exhibited as high as 75% selectivity to C2-C4 olefins, with propylene as major component (~44%).
more목차
I.서론 = 1
1.1 제올라이트의 특성 및 용도 = 1
1.2 ZSM-5 제올라이트의 구조 및 특성 = 3
1.3 MTP Process = 7
PART A. 인이 담지된 HZSM-5 촉매 = 9
Ⅱ.이론적 배경 = 9
Ⅲ.실험 재료 및 방법 = 12
3.1 재료 및 시약 = 12
3.2 촉매 특성 분석 = 13
3.3 반응 실험 및 장치 = 14
Ⅳ.실험 결과 및 고찰 = 16
4.1 XRD 분석 = 16
4.2 XRF 분석 = 16
4.3 BET 분석 = 20
4.4 NH₃-TPD 에 의한 산점 측정 = 23
4.5 촉매 반응 실험 = 25
4.6 촉매 안정성 실험 = 29
V.결론 = 31
PART B. Zeolite Foam catalyst = 32
Ⅱ.이론적 배경 = 32
Ⅲ.실험 재료 및 방법 = 37
3.1 재료 및 시약 = 37
3.2 촉매 특성 분석 = 38
3.3 반응 실험 및 장치 = 39
Ⅳ. 실험 결과 및 고찰 = 40
4.1 XRD 분석 = 40
4.2 XRF 분석 = 40
4.3 BET 분석 = 43
4.4 NH₃-TPD 분석 = 46
4.5 SEM Image = 48
4.6 반응실험 = 50
4.6.1 Zeolite foam의 Si to Al ratio 변화에 따른 실험 = 50
4.6.2 Zeolite Foam과 Pellet형태의 비교 반응 실험 = 53
V.결론 = 57
참고문헌 = 59
List of Tables
Table 1. XRF results (mass%) of trimethylphosphite treated HZSM-5 = 19
Table 2. BET surface area and pore volume measured by N₂ adsorption of trimethylphosphite treated HZSM-5 = 22
Table 3. Product distribution of MTP process over TMP/Al=0.0 = 26
Table 4. Product distribution of MTP process over TMP/Al=0.5 = 26
Table 5. Product distribution of MTP process over TMP/Al=1.0 = 27
Table 6. Product distribution of MTP process over TMP/Al=2.0 = 27
Table 7. Product distribution of MTP process over TMP/Al=4.0 = 28
Table 8. XRF results of zeolite foam = 42
Table 9. BET surface area and pore volume measured by N₂ adsorption of zeolite foam = 45
Table 10. Product distribution of MTP process over zeolite foam Si/Al=140 = 51
Table 11. Product distribution of MTP process over zeolite foam Si/Al=250 = 51
Table 12. Product distribution of MTP process over zeolite foam Si/Al=500 = 52
Table 13. Product distribution of MTP process over zeolite pellet Si/Al=250 = 55
List of Figures
Figure 1.The formation of acid sites in zeolites of NH₄ form = 5
Figure 2. Secondary building units (SBU) and ZSM-5 structure = 6
Figure 3. Model proposed for the interaction of phosphorus with the Bronsted sites of ZSM-5 zeolite proposed by Vedrine et al. [24], Kaeding et al. [32] (a), Lercher et al. [33] (b), Blasco et al. [14] (c), (d) = 11
Figure 4. Schematic of the apparatus for the preparation of MTP process = 15
Figure 5. XRD Pattern of HZSM-5. ( Range : 0.0 ~ 50 °, 0.02° 2θ) = 17
Figure 6. XRD pattern of trimethylphosphite treated-HZSM-5 (a)TMP/Al=0.0, 0.5, 1.0 (b) TMP/Al= 2.0, 4.0 = 18
Figure 7. N₂ adsorption-desorption isotherms of (a) HZSM-5 of TMP/Al=0.0, 0.5, 1.0 (b) TMP/Al= 0.0, 2.0, 4.0 = 21
Figure 8. NH₃-TPD of trimethylphosphite treated HZSM-5 = 24
Figure 9. Long-run stability test of trimethylphosphite treated HZSM-5 (TMP/Al=0.0, 1.0) = 30
Figure 10. Zeolite foam synthesis using polyurethane sponge = 35
Figure 11. Proposed mechanism for the formation of zeolite foam on polyurethane = 36
Figure 12. XRD pattern of zeolite foam. (Si/Al=140, 250, 500) = 41
Figure 13. N₂ adsorption-desorption isotherms of Si to Al ratio 140, 250, 500 zeolite foam = 44
Figure 14. NH₃-TPD of Si to Al ratio 140, 250, 500 zeolite foam = 47
Figure 15. SEM images of Si to Al ratio 140, 250, 500 zeolite foam = 49
Figure 16. Product distribution of Si to Al ratio 250 zeolite foam and pellet = 56
Figure 17. Product distribution of Si to Al ratio 250 zeolite foam and pellet in WHSV changes = 57