검색 상세

슬라이드 레일 롤포밍 공정의 다목적 최적 설계

Multi-Objective Optimum Design of Roll Forming Process of Slide Rail

초록/요약

슬라이드 레일은 롤포밍 공정을 통해 생산되는 제품으로 정밀한 형상과 함께 부드러운 이송을 위하여 진직도가 요구되며 다양한 용도로 인하여 사용자의 범위가 매우 넓고 다양하여 내구성이 크게 요구되는 제품이다. 본 연구에서는 형상 정밀도를 평가할 수 있는 형상오차인자(SDF)와 함께 슬라이드 레일의 정밀한 이송을 위하여 요구되는 진직도를 평가하는 인자(BF)와 내구성을 평가하는 인자(MISF)를 개발하였고, 실험과 유한요소 시뮬레이션의 비교를 통해 유한요소 시뮬레이션을 검증하였으며 실험계획법을 통한 계획적인 시뮬레이션으로 위의 세 인자를 예측하였다. 슬라이드 레일의 정밀한 형상을 위하여 계산된 SDF와 휨 양을 평가한 BF, 롤포밍 공정을 통해 생산된 제품의 내구성을 평가할 수 있는 MISF를 동시에 최적화하는 다목적 최적설계(Multi-Objective Optimization)를 강건설계기법을 활용하여 수행하였고 그 결과, 형상 정밀도와 진직도, 내구성을 동시에 향상할 수 있는 롤포밍 공정 설계의 수정안을 제안하였다.

more

초록/요약

A slide rail, which is comprised of several members and many bearing balls, functions like a linear guide for smooth movement of drawers. The slide rail having a complicated shape and requiring high precision in forming and straightness is manufactured by using the roll forming process. Since the range of its usage is close to our daily life, durability of slide rails is a necessary condition of the product. In this paper, standards are necessary to quantitatively evaluate the quality of the formed shape(SDF), the straightness(BF) and the durability(MISF). FE simulation is verified by comparison of the SDF, BF and MISF between the experiments and the simulation results. In the analysis of the roll forming process of a slide rail, the pass having the largest deformation is designated as the target pass and the positions and shapes of the rolls are set as design variables. A minimum number of simulations was performed by using the table of orthogonal arrays. Based on the simulation results, a cost function was obtained by the response surface method. Multi-objective optimization for improvement of the accurate shape, the straightness and the durability was performed using the robust design technique. As a result, the modified process design that improved the accuracy of shape, the straightness and the durability as compared to the original result was suggested.

more

목차

1 Introduction = 1
2 State of the Art = 4
2.1 Design of experiments = 4
2.2 Response Surface Method(RSM) = 5
2.3 Robust design = 5
3 Research methods = 9
3.1 Shape Difference Factor(SDF) = 9
3.2 Bowing Factor(BF) = 9
3.3 Modified Inverse Safety Factor(MISF) = 10
4 Experimental and simulation results = 14
4.1 Roll forming process condition = 14
4.2 FE simulation program = 14
4.3 Verification of FE simulation software = 15
4.3.1 Shape precision = 15
4.3.2 Quantity of Bowing = 15
4.3.3 Durability = 16
5 Procedure of process design modificaiton = 24
5.1 Designation of target pass = 24
5.2 Designation of design variables = 24
5.3 SDF = 24
5.3.1 Table of orthogonal arrays = 24
5.3.2 Optimization of the cost function = 25
5.4 BF = 26
5.4.1 Table of orthogonal arrays = 26
5.4.2 Optimization of the cost function = 26
5.5 MISF = 27
5.5.1 Table of orthogonal arrays = 27
5.5.2 Optimization of the cost function = 28
5.6 Robust design = 29
6 Conclusions = 38
7 References = 40
List of Tables
Table 2.1 Table of orthogonal arra = 8
Table 4.1 Material properties of SCP10 = 17
Table 4.2 Roll forming process condition of FE simulation = 17
Table 4.3 Measurement of bowing = 17
Table 5.1 Level of the design variables = 31
Table 5.2 Table of orthogonal arrays for shape difference factor = 31
Table 5.3 Table of orthogonal arrays for bowing factor = 31
Table 5.4 Table of orthogonal arrays for modified inverse safety factor = 32
Table 5.5 Table of orthogonal arrays for robust design = 33
Table 5.6 Fuzzy numbers = 34
List of Figures
Figure 1.1 Flow chart for the modification of the roll forming process design = 3
Figure 2.1 Comparison of an optimal technique and a robust technique = 7
Figure 3.1 Comparison of the raw plan and the simulation result = 12
Figure 3.2 Measurement of the area between the raw plan and the simulation result = 12
Figure 3.3 Definition of Bowing = 13
Figure 4.1 Roll forming process = 18
Figure 4.2 Flower pattern of the slide rail’s middle member = 19
Figure 4.3 FE simulation result = 19
Figure 4.4 Cross section obtained from the experiment = 20
Figure 4.5 Durability testing machine = 21
Figure 4.6 Experimental result = 22
Figure 4.7 Boundary condition and Simulation Result: (a) Boundary condition of the slide rail; (b) Safety Factor distribution = 23
Figure 5.1 Longitudinal strain along the rolling direction = 35
Figure 5.2 Shape of 18th stand = 36
Figure 5.3 Residual stress after roll forming = 37

more