IPMC구동기의 이론적 모델링과 구동특성
Theoretical Modeling and Dynamic Characteristic of a Cantilever IPMC Actuator
- 주제(키워드) IPMC , Actuator , Cantilever , Dynamic characteristics
- 발행기관 서강대학교 일반대학원
- 지도교수 이승엽
- 발행년도 2009
- 학위수여년월 2009. 2
- 학위명 석사
- 실제URI http://www.dcollection.net/handler/sogang/000000044862
- 본문언어 한국어
목차
1. 서론 = 1
1.1. 연구의 배경 = 1
1.2. 연구 동향 = 3
1.3. 연구 목적 및 개요 = 7
2. IPMC 원리 및 특성 = 8
2.1. IPMC의 원리 = 8
2.1.1. IPMC의 구조 = 8
2.1.2. IPMC의 작동원리 = 10
2.1.3. IPMC의 장점 = 12
2.2. IPMC의 특성 = 13
2.2.1. 압전 효과 = 13
2.2.2. 압전체의 전기-기계 연성계수 = 15
2.2.3. IPMC의 전기-기계 연성계수 = 17
3. IPMC 구동기 모델 = 23
3.1. IPMC 구동기의 정적 모델링 = 24
3.2. 외팔보형 IPMC구동기의 특성 해석 = 30
3.2.1. 오일러-베르누이 빔 모델 = 30
3.2.2. 모드 해석 = 34
3.3. IPMC 구동기의 동적 모델링 = 39
4. IPMC 구동기 모델링의 타당성 검토 = 43
4.1. IPMC 구동기의 구동 실험 = 44
4.1.1. 변위 실험 = 45
4.1.2. 변형형상 실험 = 49
4.1.3. 주파수 응답 실험 = 51
4.2. 수식에 의한 동작 수치해석 = 53
4.3. FEM 해석 = 55
4.4. 실험, 수학적 모델링 및 FEM 해석 비교 = 58
5. 최적화된 적층형 IPMC 구동기 = 61
6. 결론 = 64
7. References = 66
List of Tables
Table 2.1 Electromechanical coefficient by fabrication process = 20
Table 2.2 Electromechanical coefficient by length of actuator = 21
Table 2.3 Comparison with electromechanical coefficient of PZT material = 22
Table 4.1 Material property of IPMC = 43
Table 4.2 IPMC experiments = 44
Table 4.3 Experimental/Analytical results(unimorph) = 58
Table 4.4 Experimental/Analytical results(biimorph) = 58
Table 4.5 Comparison with the theory and experiment results(displacement) = 59
List of Figures
Fig.1.1 Application fields of IPMC actuator = 2
Fig.1.2 Research fields of IPMC = 2
Fig.1.3 Models proposed for IPMC (physical model) = 5
Fig.1.4 Models proposed for IPMC (chemical model) = 5
Fig.1.5 Models proposed for IPMC (gray-box model) = 6
Fig.1.6 Models proposed for IPMC (black-box model) = 6
Fig.2.1 Chemical structure of = Nafion
Fig.2.2 Schematic diagram of IPMC = 9
Fig.2.3 Diagram of IPMC bending mechanism = 11
Fig.2.4 Working principle of IPMC = 11
Fig.2.5 Principle of electromechanical coupling = 13
Fig.2.6 Direct effect of piezoelectric material = 14
Fig.2.7 Converse effect of piezoelectric material = 14
Fig.2.8 Principle of electromechanical coupling = 14
Fig.2.9 31 Mode : stress direction-1, poling dirction-3 = 16
Fig.2.10 IPMC specimen = 19
Fig.3.1 Configuration of a symmetric cantilevered multimorph = 23
Fig.3.2 Euler cantilever beam = 30
Fig.4.1 Experimental setup for IPMC actuator = 46
Fig.4.2 Input voltage, current and output signal = 47
Fig.4.3 Characteristic curve of a IPMC actuator tip by a sinusoidal input(3V(peak to peak)) as the driving voltage = 48
Fig.4.4 Characteristic curve of a IPMC actuator tip by a sinusoidal input(3V(peak to peak)) as the driving frequency = 48
Fig.4.5 Schematic diagram of deformation test = 49
Fig.4.6 Photographs of the bending behavior = 50
Fig.4.7 Displacement of IPMC’ each point with respect to input voltage = 50
Fig.4.8 The tip displacement trajectory = 51
Fig.4.9 FRF graph of IPMC actuator = 52
Fig.4.10 Bending motion of IPMC actuator caused by a sinusoidal input(3V(peak to peak), 5Hz) as a eq.(3.45) = 53
Fig. 4.11 Maximum bending motion of IPMC actuator caused by a sinusoidal input( 3V(peak to peak)) as a eq.(3.45) = 54
Fig. 4.12 Maximum bending motion of IPMC actuator caused by a sinusoidal input( 5Hz) as a eq.(3.45) = 54
Fig. 4.13 Plot of the first three bending mode shapes = 55
Fig. 4.14 Bending mode of IPMC actuator = 56
Fig. 4.15 Plot of the frequency response function = 57
Fig. 5.1 Maximum tip force with increasing layer number = 61
Fig. 5.2 Maximum displacement with increasing layer number = 62